Q) Let p(x) be a quadratic polynomial such that p(0)=1. If p(x) leaves remainder 4 when divided by x-1 and it leaves remainder 6 when divided by x + 1; then :

6

- A) P(2) = 11
- B) P(2) = 19
- C) P(-2) = 19
- D) P(-2) = 11

Solution:

Let, $P(x) = ax^2 + bx + c$
As, P(0) = 1,
$\therefore a(0)^2 + b(0) + c = 1$
\Rightarrow c = 1
$\therefore P(x) = ax^2 + bx + 1$
If $P(x)$ is divided by $x - 1$, remainder = 4
\Rightarrow P(1)=4
∴ a + b + 1 = 4 (1)
If $P(x)$ is divided by $x + 1$, remainder = 6
\Rightarrow P(-1) = 6
∴ a – b + 1 = 6(2)
By solving (1) and (2) we get,

a = 4, and b = -1

$$\therefore$$
 P(x) = 4x² - x + 1
P(2) = 4(2)² - 2 + 1 = 15
P(-2) = 4 (-2)² - (-2) + 1 = 19